Sn, p, q : Sn ⇒ p q : Sn (closure). p, q, r : Sn ⇒ (p q) r = p (q r) (associative). 1n p = p 1n = p (identity). p-1 p = p p-1 = 1n (invertible). Generally p q = q p (non-commutative). Cycle notation. p(1) = 2, p(2) = 5, p(3) = 4, p(4) = 3, p(5) = 1 ⇔ p = (1 2 5)(3 4)p-1 = (5 2 1)(4 3)